The generator matrix 1 0 0 1 1 1 0 X 1 1 1 1 0 0 X^2 X X 1 1 1 1 X^2+X 1 1 X^2+X X 1 1 1 X^2 X^2+X 1 X^2+X 1 0 1 1 1 1 1 1 X^2 1 1 1 1 1 X^2+X 1 X^2+X 1 X^2 X^2+X 1 X^2 X^2 X^2 X^2+X X^2 X^2 1 1 X 0 X X^2 X^2+X X^2 X 0 1 1 1 1 1 X^2+X 1 X^2 0 1 1 X X 1 1 0 X^2 X^2 X^2+X 1 0 1 0 0 1 1 1 X^2 X^2 X^2 X^2+1 X^2+1 1 1 X X^2+X 1 X X^2+X+1 0 1 1 X+1 X^2+X 1 1 X^2+X+1 X^2+X X+1 1 0 X^2+1 1 X 1 X^2 X+1 X^2 X X^2+X X+1 X^2 X^2+X+1 1 X^2+X X^2+X+1 X^2+1 X X X^2 0 1 X X^2+1 1 1 1 X^2+X 1 1 X^2+X+1 X+1 0 X 1 X^2+X 1 X^2 1 X^2 X^2+X+1 1 0 X+1 X^2+1 1 X^2+X+1 X^2+X X^2 X^2+1 X^2+X X 1 X X^2+X 0 1 1 0 1 0 0 1 1 X^2 X^2+1 1 1 X X+1 X^2+X X^2+X+1 X X^2+X+1 1 1 1 X X+1 X X^2+X+1 X^2+X X^2+X X^2+X+1 X^2 X+1 X+1 X^2+1 0 0 1 1 1 X+1 1 X^2 X^2+X X^2+1 X^2+1 X^2 0 1 1 X X^2+X 1 X^2 1 0 1 X+1 X+1 1 0 X^2 X^2+X+1 X^2+X 1 1 X^2+1 X X^2 1 1 X+1 1 X^2+1 1 X^2+X X X^2+X+1 X^2+X X^2 X 0 0 0 1 1 X^2+X 0 1 X^2+X+1 X^2+X+1 0 1 X^2 X 1 X 0 0 0 X^2 0 X^2 X^2 X^2 X^2 0 X^2 0 X^2 0 0 X^2 0 X^2 0 0 X^2 0 X^2 0 0 X^2 X^2 0 0 X^2 0 0 X^2 X^2 0 X^2 0 0 X^2 0 X^2 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 X^2 X^2 0 0 X^2 0 X^2 0 0 X^2 0 0 X^2 X^2 X^2 0 0 X^2 0 0 X^2 X^2 X^2 X^2 X^2 0 X^2 X^2 X^2 0 0 X^2 0 X^2 X^2 0 generates a code of length 90 over Z2[X]/(X^3) who´s minimum homogenous weight is 86. Homogenous weight enumerator: w(x)=1x^0+190x^86+100x^87+177x^88+56x^89+141x^90+40x^91+111x^92+24x^93+68x^94+12x^95+34x^96+16x^97+13x^98+8x^99+19x^100+4x^102+8x^104+1x^112+1x^120 The gray image is a linear code over GF(2) with n=360, k=10 and d=172. This code was found by Heurico 1.11 in 0.36 seconds.